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The classic paper of Slater and Koster [1] described a method for modifying a linear

combination of atomic orbitals (LCAO) for use in an interpolation scheme to determine

energy bands over the entire Brillouin zone while only fitting to the results of first-principles

calculations at high symmetry points in the zone. This Tight-Binding (TB) method was

shown to be extremely useful for the study of the band structure of solids with little compu-

tational cost. Harrison[2, 3] developed a “universal” set of parameters which are used both

to obtain a basic understanding of band structures and for making approximate calcula-

tions. Papaconstantopoulos[4] computed the Slater-Koster parameters for most elements by

fitting to results obtained from the first-principles Augmented Plane Wave (APW) method.

Numerous other applications of this method have appeared in the literature.[5, 6]

As computational methods developed, it was realized[7, 8, 9, 10, 11] that tight-binding

methods, properly applied, could be used as scheme for determining structural energies as

well as electronic structure. Since these methods use a minimal basis set for each atom, they

are much faster than first-principles methods for similar size systems, and therefore useful

for quickly studying systems containing several hundred atoms, e.g. in molecular dynamics

simulations.[12]

One example of the method is the two-center, non-orthogonal NRL-TB method,[9, 10]

which uses environment-dependent on-site parameters and bond-length dependent hopping

parameters to go beyond interpolating between fitted structures to the determination of

elastic constants, phonon spectra, and defect structures. A similar approach is used by

the Ames group[11, 13, 14] who approximate the three-center integrals by modifying the

two-center hopping integrals according to the local environment. Cohen, Stixrude, and

Wasserman[15] have modified the description of the on-site parameters (4-6) to include

crystal-field like corrections, extending the work of Mercer and Chou[16] to include d orbitals.

We have previously summarized much of this work.[5, 6] In this article we focus on extensions

of the TB method beyond the original elemental systems. Specifically, we show how the

method can be extended to spin-polarized systems, including non-collinear spins, using the

Atomic Moment Approximation (AMA).[17] We also describe the development of parameters
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for binary and ternary compounds.

As we will see, although the determination of the TB parameters is tedious, the resulting

method is computationally efficient, capable of performing static and dynamic calculations

beyond the limits of first-principles methods. The method has been applied to all of the

magnetic elements, and many non-magnetic compounds. The accuracy of electronic, elastic,

and phonon properties is comparable to that of the original, non-magnetic single element

calculations.

In the discussion of our work below, our tight-binding calculations are fitted to first prin-

ciples results obtained from the Linearized Augmented Plane Wave (LAPW) method,[18]

including full potential and total energy capabilities.[19, 20] Calculations used the Kohn-

Sham independent electron formulation of Density Functional Theory[21, 22] with various

Local Density Approximations (LDA)[23] or the Perdew-Wang 1991 Generalized Gradient

Approximation (GGA).[24] Other tight-binding methods use similar first-principles tech-

niques, as described in the references.

This work is divided into two major parts. Section I describes work on spin polarized

systems, including non-collinear spins, while Section II shows how tight-binding methods

can be adapted to compounds. Finally, in Section III we briefly discuss the future of tight-

binding total energy methods.

I. MAGNETIC SYSTEMS

Since spin-polarized density functional calculations produce eigenvalues for both the ma-

jority and minority spin channels, it is rather easy to set up a Slater-Koster tight-binding

parametrization for each channel. These parameter sets are bound together by the require-

ment that they reproduce the first-principles eigenvalues for each spin as well as the total

energy. Accordingly, we modify the original non-polarized tight-binding procedure[9, 10] as

follows:

The total energy of the tight-binding system is given by the sum over occupied states of

the shifted spin-polarized eigenvalues:

E =
∑

i

f(ε′i↑ − µ′)ε′i↑ +
∑

i

f(ε′i↓ − µ′)ε′i↓ , (1)

where f(ε) is a smoothing function, usually the Fermi function,[25] and µ′ is the shifted
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Fermi level, which gives the correct number of occupied bands, and the arrows indicate the

collinear spin-polarization of the electronic states. The eigenvalues ε′ are uniformly shifted

from the eigenvalues ε found from the density functional calculations:

ε′i↑ = εi↑ + εs , and

ε′i↓ = εi↓ + εs . (2)

The shift, εs, is defined so that the total energy E in (1) is equal to the total energy from

the DFT calculation:

εs = {E −
∑

i

[f(εi↑ − µ)εi↑ +
∑

i

f(εi↓ − µ)εi↓}/Ne , (3)

where Ne is the number of electrons in the system and µ = µ′ + εs is the Fermi level for the

original DFT calculation.

In our approach to spin-polarized tight-binding[26] we assign all of the difference between

the majority and minority bands to the on-site terms. Thus with each atom i we associate

both a majority and a minority “density” of nearby atoms:

ρi(↑,↓) =
∑
j

exp(−λ2
↑,↓Ri,j)F(Rij), (4)

where

F(R) = θ(Rc − R)/{1 + exp[(R − Rc)/L + 5]} , (5)

is a screening function designed to smoothly take the densities (4) to zero at distances greater

than Rc. Typically we take Rc between 10 and 16 a.u., and L between 0.25 and 0.5 a.u.

Once we have the density in the neighborhood of each atom, we assign the spin-dependent

on-site parameters for states with angular momentum ` = s, p, and d by

hi`(↑,↓) = α`(↑,↓) + β`(↑,↓)ρ
2/3
i(↑,↓) + γ`(↑,↓)ρ

4/3
i(↑,↓) + δ`(↑,↓)ρ

2
i(↑,↓) . (6)

We will frequently find it useful to determine the energy of a paramagnetic system using

these tight-binding parameters. In the paramagnetic system the on-site parameters are the

average of the majority and minority spin parameters in (6).

The hopping and on-site terms have the same form here as in our unpolarized tight-

binding calculations, and are taken to be independent of the spin associated with each

3



tight-binding orbital. Thus the Slater-Koster hopping parameters between atoms separated

by a distance R are given by

H``′µ = [A``′µ + B``′µR + C``′µR
2] exp(−D2

``′µR)F(R) , (7)

where ``′µ = (ssσ, spσ, ppσ, ppπ, sdσ, pdσ, pdπ, ddσ, ddπ, ddδ) are the Slater-Koster parame-

ters. We usually assume the tight-binding basis to be non-orthogonal, requiring us to define

a set of overlap parameters S``′µ to compliment (7). In the spin-polarized calculations we

have done so far we have given S the same functional form as H, only noting here that this

is not required for a successful theory.[9, 10]

For an sp3d5 basis, the procedure above gives 106 independent parameters. For Iron[26]

we fit these parameters to reproduce a database of eigenvalues and total energies for para-

magnetic bcc Fe, ferromagnetic bcc Fe, and ferromagnetic fcc Fe, using the GGA[24] to

obtain the correct ferromagnetic body-centered cubic ground state. The structural energies

as a function of volume are shown in Fig. 1, where we compare our results to first-principles

calculations. We note that the output paramagnetic fcc total energy closely tracks the para-

magnetic fcc energy from LAPW calculations. It should be noted that the tight-binding

parametrization cannot reproduce the low-spin/high-spin discontinuity found in ferromag-

netic fcc Iron.[27] This is not usually a problem in Fe, especially when we consider that the

paramagnetic fcc TB total energy is very close to the low-spin fcc LAPW total energy.

The tight-binding method also lets us examine the total polarization in a system, as the

difference in occupation number between the majority and minority spin sites,

m =
∑

i

[f(εi↑ − µ) − f(εi↓ − µ)] . (8)

Fig. 2 shows the magnetic moment for fcc and bcc Iron as a function of volume. Note that

the first-principles high/low spin transition in fcc Iron occurs at approximately the same

volume at which the paramagnetic TB total energy becomes lower than the ferromagnetic

TB energy for the FCC lattice.

We have extended our tight-binding calculations for magnetic systems to Cobalt and

Nickel (as well as Chromium, which will be discussed below). Both elements are substantially

easier to fit than Iron, since there is no high/low spin transition in any state. Our fitting

database included first-principles LAPW total energy calculations for the fcc, bcc, and

simple cubic structures, using the Hedin-Lundqvist LDA.[23] The resulting TB parameters
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FIG. 1: Comparison for first-principles and tight-binding calculations for Fe, using a spin-polarized

tight-binding parametrization.[26] Squares represent bcc phases, diamonds fcc phases. Solid sym-

bols denote ferromagnetic phases, open symbols unpolarized phases. Red lines are LAPW calcula-

tions, blue lines tight-binding. The low-spin/high-spin discontinuity in the LAPW ferromagnetic

phase is not reproduced by the tight-binding parametrization.

correctly predict the ferromagnetic hcp lattice as the ground state of Co, even though we

did not include this state in the fit. Table I shows our calculated elastic constants[28, 29]

for the three ferromagnetic elements as well as Cr. We list the TB results at both the

equilibrium and experimental volumes.[30] At the experimental volume we find that the

elastic constants are in good agreement with experiment, and are at the same level of

accuracy as first-principles DFT calculations.

Using our tight-binding parameters we have determined phonon frequencies at high-

symmetry locations in the Brillouin zone, using the frozen-phonon method. Table II shows

phonon frequencies for Iron and Nickel, compared to experiment.[31, 32] The symmetry

notation used here follows that of Miller and Love.[33] We see that the agreement here is

comparable to similar calculations for non-magnetic transition metals.[9]

Barreteau et al.[34] have developed a method for the study of magnetism in transi-

tion metals by starting with an approach similar to ours for the non-magnetic part of the

interaction,[35] and modeling the magnetic interactions by a multiband Hubbard model
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FIG. 2: Comparison for first-principles and tight-binding calculations for the magnetic moment of

Fe, using the spin-polarized tight-binding parametrization of Ref. [26]. The notation is the same

as in Fig. 1.

treated in the Hartree-Fock approximation. The method has been applied to Rh and Pd

clusters and slabs.[36] Recently Barreteau et al.[37] analyzed the main effects due to the

renormalization of the hopping integrals by the intersite Coulomb interactions. They find

that these effects are strongly dependent on the relative values of the intersite electron-

electron interaction and on the shape of the electronic density of states. The predicted

electronic structure for bcc Iron, hcp Cobalt, and fcc Nickel are in excellent agreement with

first-principles calculations.

Xie and Blackman[38] begin with a similar, though orthogonal, form for the non-magnetic

part of the tight-binding calculation, and add parametrized terms for charge self-consistency

and spin polarization. They use their method to study the magnetics of Iron clusters em-

bedded in Cobalt.

Finally, we note that one could apply the semiempirical approach of Krasko,[39] using a

Stoner model to add a magnetization energy to, in our case, a non-magnetic tight-binding

parametrization. This approach has the advantage that a single set of parameters serves for

both the magnetic and non-magnetic cases, but it has not been applied to materials other

than Iron.
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TABLE I: Elastic constants for the magnetic elements computed from the spin-polarized tight-

binding parameters and compared to experiment.[30] Calculations for Fe, Co, and Ni were done

with ferromagnetic spin orientations. The first “TB” column is the tight-binding equilibrium

volume, while the second is at the experimental equilibrium. For Co we use the tight-binding

minimum energy value for c/a at the experimental volume. As explained in the text, we model

the spin-density wave in Chromium by a CsCl type unit cell, where one of the Cr atoms has spin

“up” and the other spin “down”. All elastic constants are in GPa.

Cr Fe Co Ni

TB TB Exp. TB TB Exp. TB TB Exp. TB TB Exp.

a (a.u.) 5.280 5.451 5.451 5.373 5.416 5.416 4.797 4.786 4.743 6.483 6.652 6.652

c (a.u.) 7.591 7.557 7.693

B 278 164 162 180 158 173 223 247 186 264 175 185

C11 599 407 350 250 223 237 348 359 287 358 251 249

C12 117 42 68 145 125 141 180 189 158 217 137 153

C13 160 168 116

C33 322 336 322

C44 142 105 101 142 132 116 78 80 66 75 69 96

We have calculated vacancy formation energies by a supercell method.[10, 25] One atom

in the supercell is removed and neighboring atoms are allowed to relax around this vacancy

while preserving the symmetry of the lattice. The great advantage of the NRL-TB method

over first-principles approaches is that we can do the calculation in a very large supercell,

in a computationally efficient manner, including relaxation with the TBMD code.[12] We

found that a supercell containing 216 atoms was sufficient to eliminate vacancy-vacancy

interactions in ferromagnetic iron and nickel. For iron, we found an unrelaxed vacancy

formation energy of 2.62 eV, and a relaxed formation energy of 2.33 eV. For nickel we found

1.87 and 1.60 eV for the unrelaxed and relaxed formation energies. The relaxed vacancy

formation energies are in very good agreement with the experimental values of 2.0 eV for

iron and 1.6 eV for nickel.
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TABLE II: Phonon frequencies at selected high symmetry points for ferromagnetic fcc Iron and bcc

Nickel, computed from NRL tight-binding parameters and compared to experiment. Symmetry

labels follow the notation of Miller and Love.[33] The column labeled “P” indicates the polarization

of the mode, either Longitudinal (L) or Transverse (T), if it is defined. The column “D” indicates

the degeneracy of the mode. All frequencies are in inverse centimeters.

Fe Ni

Sym. P D TB Exp.[31] Sym. P D TB Exp.[32]

H 3 289 286 X3 L 1 273 285

P 3 262 240 X5 T 2 180 209

N3 L 1 308 357 L2 L 1 265 296

N2 T 1 221 215 L3 T 2 130 141

N4 T 1 148 149 W2 1 170 207

W5 2 198 250
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FIG. 3: Tight-binding total energy calculations for bcc Chromium, using spin-polarized parameters.

The ferromagnetic (FM) calculations were done in the bcc unit cell. The anti-ferromagnetic (AFM)

calculations were performed using two atoms in a simple cubic unit cell, with one spin pointing

“up,” and the other “down.”[40]
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A. Non-Collinear Magnetism

The theory described above assumes, as in most versions of spin-dependent density func-

tional theory, that the electronic spin points in a global “up” or “down” direction, excluding

the possibility that electrons on different atoms might be aligned in different directions. This

is a difficult problem in density functional theory. A simplified approach valid within the

Atomic Moment Approximation (AMA) was made by Pickett.[17] We have adapted[40] it

to our tight-binding procedure (1-7) as follows:

For each atom, define the paramagnetic part of each on-site term as

ti` = (hi`↑ + hi`↓)/2 , (9)

where the hi`(↑,↓) are defined in (6). Define the exchange splitting introduced by the polar-

ization by

∆i` = (hi`↑ − hi`↓)/2 . (10)

Note that both (9) and 10) define diagonal elements in the Slater-Koster Hamiltonian.

To introduce non-collinear spin polarization, we give each atom a spin direction d̂i, where

|d̂i| = 1. We then construct the non-orthogonal Slater-Koster Hamiltonian by coupling the

majority and minority spin channels together. The hopping and overlap terms between

majority and minority orbitals are assumed to be identical to the terms between orbitals of

the same spin are have the form (7). The on-site terms, however, are mixed according to

the rule

hi`s,j`′s′ = ti` δi,jδ`,`′ − 1/2 ∆i` δi,jδ`,`′ d̂i · ~σss′ , (11)

where the s and s′ components indicate the spin index (↑ or ↓), and ~σss′ is the vector form

of the Pauli spin matrices for spins s and s′.

The simplest application of non-collinear magnetization is an anti-ferromagnet, where the

d̂i are along the Cartesian directions ẑ and −ẑ. This a common model for Chromium,[41]

which has a nominally bcc structure modulated by an incommensurate spin-density wave

with vector q = (2π/a)(0, 0, 0.952). If we model this vector by (2π/a)(0, 0, 1), which is the

ground state of all first-principles calculations using current Density Functionals,[42] then

the wave is commensurate and we can model it as an antiferromagnetic CsCl-like unit cell

with atoms on the Cesium sites having spins pointing in the ẑ direction and atoms on the

Chlorine sites point along the opposite direction. We computed the total energy for this
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FIG. 4: Tight-binding total energy calculations for α-Manganese, using spin-polarized and un-

polarized parameters and the non-collinear tight-binding method.[40] The paramagnetic (PM)

calculations used the average of the spin-up and spin-down parameters. The ferromagnetic (FM)

calculations used the spin-polarized parameters with all the atomic spins aligned. For nearly anti-

ferromagnetic (AFM) calculations, atoms at the (2a) and one set of (24g) Wyckoff positions were

aligned in the “up” direction, and atoms on the (8c) and second (24g) sites were aligned “down.”

This yields the lowest possible total spin for the primitive 29-atom α-Mn unit cell.

state by using our spin-polarized tight-binding parameters for Cr, and equations (9-11),

alternating the “up” and “down” spins in a CsCl structure, to yield the results shown in

Fig. 3. We see that the antiferromagnetic phase has lower energy than the ferromagnetic

phase for all volumes, in agreement with experimental data.

Manganese is another element with an antiferromagnetic ground state. We have previ-

ously shown [43] that paramagnetic tight-binding parameters correctly predict the ground

state αMn structure, but we did not consider the effects of magnetic interactions. Using

a spin-polarized set of tight-binding parameters, fitted to the fcc, bcc, and simple cubic

structures, we computed the total energy of αMn for all possible spin configurations which

preserve the symmetry of the crystal. As shown in Fig. 4, we found that a configuration

with 13 “up” atoms and 16 “down” atoms gives the lowest energy. Given the constraints of

the 29-atom unit cell we cannot get a perfect antiferromagnet. This will require (at least)
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doubling the unit cell.

An alternative method for determining magnetization within a parametrized tight-

binding framework was developed by Mukherjee and Cohen.[44] In this method the net

magnetic moment (8) is considered to be a parameter, and is solved for self-consistently.

This allows ferromagnetic and paramagnetic systems to be computed from the same set

of parameters. The method has been successfully applied to high pressure hcp Iron,[45]

which has a rather unusual magnetic structure.[46], Zhuang and Halley[47] use a charge

self-consistent tight-binding method to describe the non-collinear magnetic spin structures

of MnF2 and MnO2.

II. COMPOUNDS

Extension of the method to compounds requires several modifications.[48] As always, we

begin by shifting the eigenvalues so that their sum is the total energy

E[n(r)] =
∑
n

f(ε′n − µ′) ε′n , (12)

There are three types of parameters in the fit: the on-site terms, which depend on the

local environment and represent the energy required to put an electron in a specific atomic

shell, the hopping parameters, which represent the energy required for the electron to move

between atoms, and overlap parameters, detailing the non-orthogonality of the tight-binding

orbitals. In all three cases we must now determine pairwise interactions between atoms of

the same type as well as those between atoms of different species.

The environmental dependence of the on-site parameters is controlled by a set of atomic-

like densities,

ρ(i, ̃) =
∑
j∈̃

exp[−λ2
ı̃̃|Ri − Rj|]F(|Ri − Rj|) , (13)

where the ith atom is of type ı̃, the jth atom is of type ̃, ρ(i, ̃) is the density on atom i due

to atoms of type ̃, and λı̃̃ is a fitting constant to be determined, and F is defined in (4).

The on-site terms themselves are polynomial functions in ρ2/3:

h`(i) = a`(̃ı) +
∑

̃

[b`(̃ı, ̃)ρ(i, ̃)2/3 + c`(̃ı, ̃)ρ(i, ̃)4/3 + d`(̃ı, ̃)ρ(i, ̃)2] , (14)

where the sum is over all atom types in the system. Each atom type interacts with the target

atom differently. The method used here was adopted for the sake of expediency, and is not
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the ideal form. However, it is a very useful form, as we shall see. In general we use angular

momenta ` = s, p, d. However, in systems with essentially cubic symmetry it is sometimes

convenient to split the d on-site terms into tg and e2g components. We took this approach

for the parametrization of FeAl,[48] but not for Cu-Au.[49]

The two-center Slater-Koster hopping integrals are determined using an exponentially

damped polynomial, and depend only on the atomic species and the distance between the

atoms:

H``′µ(i, j; R) = [A``′µ(̃ı, ̃) + B``′µ(̃ı, ̃)R + C``′µ(̃ı, ̃)R2] exp[−D2
``′µ(̃ı, ̃) R]F(R) . (15)

The A, B, C and D parameters are to be fit. For like-atom (̃ = ı̃) interactions, there are 10

independent Slater-Koster parameters:

ssσ, spσ, ppσ, ppπ, sdσ, pdσ, pdπ, ddσ, ddπ, and ddδ .

When the atoms are of different types, we must include an additional four parameters,

psσ, dsσ, dpσ, and dpπ .

Note that we do not distinguish between tg and e2g orbitals when computing the hopping

integrals.

Since we are using a non-orthogonal basis set, we must also parametrize the overlap

integrals. These have a form similar to the hopping integrals:

S``′µ(i, j; R) = [O``′µ(̃ı, ̃) + P``′µ(̃ı, ̃)R + Q``′µ(̃ı, ̃)R2] exp[−T 2
``′µ(̃ı, ̃) R]F(R) , (16)

where O, P, Q and T also represent parameters to be fit. Again we do not distinguish between

tg and e2g orbitals.

For a two-component system with s, p, d orbitals, including tg and e2g on-site terms, there

are 330 parameters (λs, a, b, c, d, A, B, etc.) which are used in the fit, in contrast to 97

for a single-element parametrization.[10] These parameters are chosen so as to reproduce

the eigenvalues ε′ and energies E in equation (12). While the number of parameters may

seem rather large, one must realize that we are using these parameters as a mathematical

transformation from the DFT to the TB formalism. With this in mind, the number of

parameters seems quite reasonable.

Copper-Gold
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FIG. 5: Formation energy diagram for ordered Cu1−xAux compounds, using our tight-binding

parameters.[6, 49] Strukturbericht symbols are used to designate the phases, except for A1’ and

A2’, which are ordered Cu7Au and CuAu7 supercells of the fcc and bcc lattices, respectively. The

tie line connects the known ordered structures in the Cu-Au system.[50] The red dots represent

structures used to fit the tight-binding parameters, while the blue dots are predictions.

A good test case for the method is the Cu-Au system. Experimentally it is known that

ordered phases exist up to 200-400 ◦C for Cu3Au (L12), CuAu (L10), and CuAu3 (L12).[50]

Theoretically, Ozoliņš, Wolverton and Zunger[51] have done extensive first-principles cal-

culations on hypothetical ordered phases in this system, using the energetics data to fit a

cluster expansion model for the alloy. In our calculations, we first obtained good tight-

binding parameters for Cu[52] and Au.[12] These were fixed throughout the remainder of

the fit. We then fit the Cu-Au on-site, hopping, and overlap terms to reproduce the band

structure and total energies of Cu3Au and CuAu3 in the L12 and D03 structures, and CuAu

in the L10, L11, B1, and B2 structures. We then compute the total energies of a number

of ordered structures, and compute the formation energy per atom, which, for a structure

with formula unit CumAun is

Eform(m, n) = [E0(CumAun) − nEfcc(Cu) − mEfcc(Au)]/(m + n) . (17)

where E0 is the minimum energy for the structure in question, and Efcc is the equilibrium

energy of the pure element in the face-centered cubic phase. The results for the low-lying

13



−75

−50

−25

 0

 25

 50

L12 D023 D022 L10 NbP W2 SQS8a L11 C11b L12 D022

Fo
rm

at
io

n 
E

ne
rg

y 
(m

eV
/a

to
m

)

Cu3 Au Cu Au Cu Au2 Cu Au3

NRL−LAPW
NREL−LAPW
TB

FIG. 6: Formation energy of several ordered phases in the CuxAu1−x system, calculated using our

tight-binding parameters[6, 49] (blue bars), and compared to first-principles calculations performed

by Ozoliņš et al.[51] (red bars). The structure notation is from Ref. [51]. On this scale, the cluster-

expansion energies found in Ref. [51] are indistinguishable from the corresponding LAPW results.

For comparison, we also plot our first-principles LAPW results (green bars), which were used in

the Cu-Au tight-binding fitting process.

phases in the Cu-Au system are shown in Fig. 5. We see that these parameters do, in fact,

predict the existence of ordered L12 Cu3Au and L10 CuAu. The L12 CuAu3 structure is, on

the other hand, above the tie-line between CuAu and pure gold. This is consistent with our

LAPW calculations, suggesting that L12 is not the ground state structure of CuAu3.

Figure 6 compares some of our structural energies to the first-principles formation energies

found by Ozoliņš et al.[51] We see that we have very good agreement for the low-lying phases.

Part of the discrepancy may be that we disagree slightly on the first-principles formation

energies of some structures, as shown in the figure.

To further assess the transferability of the Cu-Au parameters, we computed elastic

constants and zone-center phonon frequencies for ordered Cu3Au and compared them to

experiment[53, 54] as well as first-principles LAPW calculations. The results are shown in

Table III. We find reasonable agreement between these values and results obtained from

first-principles.
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TABLE III: Equilibrium bulk properties of Cu3Au in the L12 structure, as determined by our

tight-binding parametrization[49], first-principles LAPW calculations, and from experiment.

Property Experiment LAPW TB

a (Å) 3.755[53] 3.68 3.69

C11 (GPa) 187[30] 180 198

C12 (GPa) 135[30] 120 98

C44 (GPa) 68[30] 92

Γ4 (cm−1) 125[54] 110 153

Γ4 (cm−1) 210[54] 200 270

Γ5 (cm−1) 161[54] 159 195

FIG. 7: Band structure of the Cu3Au from [49]: (a) bulk system along the ΓR direction, and

(b) (111) surface along the ΓM direction. E1 and E2 are the experimentally determined surface

states.[55]

The advantage of the tight-binding method over first-principles is that it allows us to

quickly study systems with a large number of atoms. Accordingly, we used these parameters

to seek understanding of the surface electronic structure of Cu3Au.[49] Experiment[55] shows

that two electronic surface states exist at Γ in the (111) surface Brillouin zone of Cu3Au.
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FIG. 8: The formation energies versus atomic volume for ordered FexAl1−x structures, calculated

using our TB parameters[48] and compared to first-principles LAPW calculations. The solid lines

represent the TB results while the points represent the LAPW results.

We model this system using our TB parameters and a slab consisting of 15 atomic layers

and 60 atoms. In Fig. 7, we compare band structures for bulk Cu3Au and the slab. We see

that the surface states found experimentally agree nicely with the states found in our TB

calculation.

Aluminides, Hydrides, and Carbides

To study aluminides we created a database of LAPW calculations for the B1 (NaCl), B2

(CsCl), D03 (Fe3Al), C11b (MoSi2), and B32 (NaTl) structures, generating TB Hamiltonians

for FeAl,[48] CoAl, and NiAl by fitting the energy bands for the B2 structure and the total

energies for all the above structures. The TB Hamiltonian included the s,p, and d orbitals

for both the metal and Al sites, which were all necessary for obtaining a good fit to the

LAPW results. The RMS error for the total energy was less than 1 mRy for all structures

fitted, and in the B2 structure the RMS error for the lowest 12 bands was less than 20

mRy. We were able to reproduce well the lattice constants and bulk moduli, and electronic

properties, such as the densities of states and energy bands. In addition, quantities that were

not fitted, such as elastic constants, are found to be in good agreement with independent

LAPW calculations and experiment.

Fig. 8 shows that there is excellent agreement between the LAPW results and the TB
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parameter set which was selected to improve the fit to the FeAl band structure compared to our
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FIG. 10: The electronic density of states of B2 (CsCl) FeAl, using the TB (left) and LAPW (right)

methods, at the lattice constant a = 2.94Å. In each case the Fermi level has been set to zero. The

partial densities of states are given according to the legend in each part of the figure. While the

LAPW results have a longer tale at low energy, the DOS are essentially similar near the Fermi

level.

results over a wide range of pressures for all the fitted phases. The agreement is especially

good in the ground-state CsCl (B2) structure. We plot the formation energy, which is defined

in analogy with (17).

The TB and LAPW band structures of the B2 FeAl structure are shown in Fig. 9. The
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original TB calculations[48] reproduces the main features of the first-principles results, but

in detail there are significant differences. Here we use a parameter set which has a better fit

to the band structure, and find that the behavior of the bands near the Fermi level is close to

the LAPW results. We obtained the TB and LAPW electronic densities of states (DOS) by

the tetrahedron method,[56] using 165 k-points in the irreducible part of the Brillouin zone.

The LAPW and TB DOS shown in Fig. 10 are in good agreement. Experimentally, the DOS

at the Fermi energy is known only from specific-heat measurements, where it was measured

to be ρ(εF ) = 31.1 states/Ry/FeAl molecule.[57] Our TB calculation yields (F) = 48.7

states/Ry, slightly higher than the LAPW value ρ(εF ) = 36.8. Other reports in the literature

also find the theoretical value of ρ(εF ) to be greater than that from experiment, a discrepancy

that does not allow for electron-phonon enhancement, which puts the experimental result

into question. This discrepancy is possibly caused by the non-stoichiometry of the Fe-Al

samples.

Our predicted equilibrium lattice parameters and bulk modulus are also in good agree-

ment with the first-principles results shown in Table IV. This is a result of the fitting

procedure, as we fit the TB parameters to total energies at several volumes. However, the

shear elastic moduli that we computed[29, 58] for the CsCl phase were not included in the

fit, and except for C44 are in good agreement with the experimental results. In summary,

we have presented a brief report of our TB study of the FeAl system. We showed that the

parameters describe excellently several bcc and bcc-like phases as well as the NaCl phases.

We have also developed tight-binding parametrizations for several other binary com-

pounds. We can judge the transferability of the parameters by computing elastic constants

for the equilibrium phase and comparing to experiment, as we do in Table IV. In many

cases, the compound measured is not stoichiometric, e.g., PdH0.66[59] or Fe0.5989Al0.4011[30],

or only has been measured in thin films.[60] In extreme cases, where there is no available

experimental data, we compare to the results of LAPW calculations.[58]

The tight-binding method described here is not limited to the study of bulk systems. It

can, indeed, be used to study chemisorption processes. Our initial work was on the Pd-H2

system. [63] Building on our previous parameters for Pd,[9] and using a database of 55 ab

initio total energy calculations, we were able to model dissociation of molecular hydrogen at

the Pd (100) surface. We modified our usual procedure so that the fitting was done varying

only the hydrogen on-site terms and the H-H and Pd-H Hamiltonian and overlap hopping
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TABLE IV: Equilibrium lattice parameters and elastic constants (in GPa) for various cubic com-

pounds in the NaCl or CsCl structure. Tight-Binding results are compared to the available ex-

perimental data, noting that some compounds do not exist at the given stoichiometry. Values are

calculated at the indicated equilibrium lattice constants (in atomic units).

NiH PdH FeAl NiAl CoAl NbC VN

TB LAPW TB Exp.[59] TB Exp.[30] TB Exp.[30] TB LAPW[58] TB Exp.[61] TB Exp.[60]

a 6.908 6.908 7.723 7.584 5.323 5.479 5.389 5.461 5.295 5.408 8.405 8.447 7.873 7.810[62]

B 238 234 207 183 204 136 195 166 213 157 313 340 333 268

C11 353 311 282 227 313 181 247 211 306 257 639 620 570 533

C12 181 196 170 161 149 114 168 143 166 107 151 200 214 135

C44 92 64 27 69 71 127 60 112 82 130 126 150 170 133

parameters. The Pd on-site terms and Pd-Pd parameters were kept fixed to their pure Pd

values. However, to obtain higher accuracy we expanded the polynomial that described the

H-H and Pd-H parameters up to fourth order.

Figure 11 shows potential energy surface cross-sections for two orientations of the H2

molecule above the surface. A comparison of the TB and ab initio results reveals that the

fit reproduces the minimum energy paths and also the general shape of the elbow plots very

well. The overall RMS error, including additional ab initio values that were not fitted, was

only 0.1 eV, a value that is usually considered to be within the accuracy of the ab initio

total energies.

Using similar techniques, we have also developed a set of tight-binding parameters for

studying the dissociation of the O2 molecule as it approaches a platinum surface.[64] In

addition to the energy surfaces (as we computed for Pd-H2), we used the Tight-Binding

Molecular Dynamics (TBMD)[12] code to compute sticking probabilities. This was done by

performing TBMD runs for a number of incident O2 kinetic energies in the range 0-1.5 eV,

and averaging over 150 trajectories for a given energy. The results are shown in Fig. 12. We

see that the trapping probability has the same basic behavior as found experimentally,[65, 66]

showing that we can successfully model the chemisorption of O2 on Pt.

Silicon Carbide

We previously developed parameter sets for both Carbon[67] and Silicon,[68] so it is natu-
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FIG. 11: Contour plots of the TB-PES along two two-dimensional cuts through the six-dimensional

coordinate space of H2/Pd(100).[63] The coordinates in the figure are the H2 center-of-mass dis-

tance from the surface Z and the H-H interatomic distance dH−H . The lateral H2 center-of-mass

coordinates in the surface unit cell and the orientation of the molecular axis, i.e., the coordinates

X, Y, u, and f are kept fixed for each 2D cut and depicted in the insets. The molecular axis is kept

parallel to the surface; (a) corresponds to the dissociation at the bridge site, (b) to dissociation at

the top site. The dots denote the points that have been used to obtain the fit. Energies are in eV

per H2 molecule. The contour spacing is 0.1 eV.

ral to extend the technique to the development of a parameter set for SiC.[69] Silicon carbide

has a wide variety of polytypes, distinguished by the stacking of the SiC layers. It is therefore

a good test of the ability of the method to develop transferable parameter sets. The param-

eters were developed by fitting to the zincblende (stacking ABCABC), wurtzite (stacking

ABAB), and 4H (stacking ABACABAC) structures, several zone-boundary phonons, elastic

constant modes, and diamond Si and C. The method was able to successfully reproduce the

first-principles electronic band structure, as shown in Fig. 13. In addition, we computed

phonon frequencies along the (001) direction of the zincblende unit cell and compared them
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FIG. 12: Trapping probability of O2/Pt(111) as a function of the kinetic energy for normal inci-

dence. [64] Results of molecular beam experiments for surface temperatures of 90 and 200 K[65]

and 77 K[66] are compared to TBMD simulations for the surface initially at rest (Ts = 0 K).

to experiment.[70] As seen in Fig. 14, the acoustic modes are in good agreement with exper-

iment, though the optic modes are somewhat low. Thermal expansion was also computed

using the TBMD program, and found to be in good agreement with experiment.

Tight-binding description of MgB2

A nonorthogonal TB Hamiltonian for the superconductor MgB2 was derived[71] by fitting

to both the total-energy and energy-band results of a first-principles full-potential LAPW

calculation using the Hedin-Lundqvist parametrization of the local-density approximation

LDA. The LAPW calculations were performed in the ground-state (AlB2) structure, for 17

different combinations of c and a, that determined the LDA equilibrium volume. The LAPW

results for the total energy and the energy bands at 76 k points in the irreducible hexagonal

Brillouin zone, were used as a database to determine the parameters of the TB Hamiltonian.

Our basis included the s and p orbitals in both Mg and B in a nonorthogonal two-center

representation. In order to obtain an accurate fit it was essential to block diagonalize the

Hamiltonian at the high-symmetry points Γ, A, L, K, and H. We found that at a given

set of lattice parameters (c,a) we can reproduce the energy bands of MgB2 quite well. A
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comparison is shown in Fig. 15, where the solid and broken lines represent the LAPW and

TB bands, respectively, at the LDA values of the equilibrium lattice parameters. The TB

bands are in very good agreement with the LAPW bands, including the two-dimensional

B- band in the A direction just above , which has been identified as hole-band-controlling

superconductivity. The RMS fitting error is 2 mRy for the total energy, and close to 10
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FIG. 15: The band structure of MgB2 in the AlB2 structure at the theoretical equilibrium volume,

as determined by the full-potential LAPW method (solid lines) and our tight-binding parametriza-

tion dashed lines.[71] The Fermi level is at zero.

mRy for the first five bands. Beyond the fifth band our fit is not as accurate, as the Mg

d bands, which are not included in our Hamiltonian, come into play. The values of our

TB parameters are given in the references.[71] In Fig. 16 we show a comparison of TB and

LAPW densities of states DOS. There is an excellent agreement in both the total DOS and

the B p-like DOS.

The B and Mg s components of the DOS have their strongest presence at the bottom

of the valence band, from -0.8 Ry to -0.6 Ry on our scale. They are much smaller than

the p-like DOS, so we chose not to include them in Fig. 16. Additionally, we have omitted

the Mg p-like DOS, which is also small below εF , but becomes significant above Ef . Our

TB value of the total DOS at εF is ρ(εF ) = 0.69 states/eV, which is almost identical to

that found from our direct LAPW calculation. This value of ρ(εF ) corresponds to the LDA

equilibrium volume and is slightly smaller than the value of 0.71 states/eV reported by other

workers at the experimental volume. Using our value of ρ(εF ) and the measured value of the

specific-heat coefficient γ we find a value of the electron-phonon coupling constant λ = 0.65,

which is consistent with the high superconducting-transition temperature in MgB2.

Our TB Hamiltonian also provides an accurate description of the energetics of MgB2,

as shown in Fig. 17. We have tested our parameters by computing the TB equilibrium
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FIG. 16: The electronic density of states DOS of MgB2 in the AlB2 structure at the theoretical

equilibrium volume, comparing the total DOS as determined by the full-potential LAPW method

(upper solid line) and our tight-binding parametrization[71] (upper dashed line), and the partial

single-atom B p decomposition lower lines.

structure. We find an equilibrium of c 6.66 a.u. and a 5.79 a.u., in good agreement with

the LAPW result. At c/a = 1.14 ,the experimental value, we deduce a bulk modulus of B

= 165 GPa which is in good agreement with the experimental value of 120 GPa and with

the calculated value of 147 GPa reported by Bohnen et al.[72]

Ternary systems: Ruthenates

The NRL-TB scheme has been applied to ternary systems as well. For such applications

the number of parameters increases substantially. However, in most cases it is easy to

restrict the number of parameters by using an orthogonal Hamiltonian and by reducing the

orbitals to only those who are the most dominant in the particular system. We consider

first[73] SrRuO3 and Sr2RuO4 where for the former we have constructed a 14x14 orthogonal

Hamiltonian including Ru-d and O-p orbitals and for the latter the Hamiltonian size is 27x27

with Sr-d, Ru-d, and O-p orbitals. In these calculations we did not fit the total energies,

as we aim only for a very accurate reproduction of the LAPW band structures. These

Hamiltonians allow the band structure to be computed on very fine meshes in the Brillouin

zone at low computational cost, and additionally have yielded an analytic form for band

velocities, while retaining the accuracy of the full-potential electronic structure calculations.
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FIG. 18: Fermi surface of SrRuO4 from LAPW and TB calculations.[73]
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FIG. 19: Low frequency limit of χ′′
0(q, ω)/ω in NaxCoO2, using a tight-binding parametrization of

Co-O,[74] The double humped peaks on the zone boundary indicate nesting.

This greatly facilitates calculation of transport and superconducting parameters related

to the fermiology. These features were exploited to calculate the Hall coefficient and an

anisotropy parameter relevant to the superconducting vortex lattice geometry for Sr2RuO4.

A comparison of TB and LAPW Fermi surface for Sr2RuO4 is shown in Fig. 18 where we

see an excellent agreement.

NaxCoO2

The TB method has been applied to the study of the odd-gap superconductor

NaxCoO2.[74, 75] This system has strong nesting, involving nearly 70% of the electrons

at the Fermi level. Since this effect primarily involves the Co and O atoms, the parametriza-

tion was restricted to those states. The crystal field of the octahedral structure splits the

on-site Co d-bands into a1g, eg, and e′g bands. To accommodate this, the on-site parameters

(14) were computed independently for the xy, yz, zx, x2 − y2, and 3z2 − r2 Co d orbitals

and the x, y, and z O p orbitals. The dependence of the on-site and hopping parameters on

bond distance was then used to analyze the Fermi surface change with interlayer distance.

The band structure and Fermi surface was found to depend on the Oxygen height in a non-

trivial manner. In addition, the one-electron susceptibility was then computed, as shown in

Fig. 19. The nesting shown hear leads to a charge density wave as well as spin-fluctuations,
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suggesting that system is an odd-gap triplet s-wave superconductor.

Other methods

Porezag, et al.[8] developed an alternative method for computing total energies and elec-

tronic eigenvalues from a parametrized tight-binding scheme. In their work, based on the

Linear Combination of Atomic Orbitals (LCAO) method, the hopping parameters computed

directly from first principles calculations. A repulsive pair potential between the ions is then

fitted so that the sum of the pair potential energies and the sum over the occupied states gives

the correct total energy. Finally, the on-site terms are corrected with a simulated Coulomb

interaction to preserve charge self-consistency on each ion. The method has been applied to

many sp3 systems, including e.g., predicting the structure of tetragonal CN compounds,[76]

the electronic structure of GaN edge dislocations, and the structure of amorphous CN.[77]

Halley and co-workers[7, 78, 79] have developed a similar charge self-consistent tight-

binding approach, which has been applied mainly to oxides (rutile TiO2) and fluorides

(MnF2, discussed in Sec. I). In this method the isolated ions are required to have the proper

energy levels, which allows for better descriptions of electrochemistry. As noted above, this

method has also been used to study magnetic systems.

Pan[80] adapted the work of the Ames group on carbon[11] to derive a tight-binding

parametrization for hydrocarbons. This has been used to study the geometries of small hy-

drocarbons and hydrogenated diamond surfaces, and finds geometries in qualitative agree-

ment with previous results.

We have discussed extensions of the our original tight-binding total energy method[9, 10]

to spin-polarized systems, including non-collinear spins, and compounds. Although the

determination of the TB parameters is tedious, the resulting method is computationally

efficient, capable of performing static and dynamic calculations beyond the limits of first-

principles methods. We have applied the method to all of the magnetic elements, and many

non-magnetic compounds. The accuracy of electronic, elastic, and phonon properties is

comparable to that of the original, non-magnetic single element calculations.

III. OUTLOOK

Tight-binding total energy methods can be thought of as a mapping of a large set of

first-principles data onto a compact TB Hamiltonian based on Slater-Koster parameters.
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As we have seen, these methods are nearly as accurate as first-principles calculations over

a wide range of structures and densities. The calculations are very fast, as well. A typical

first-principles calculation for a transition metal or intermetallic compound requires on the

order of one hundred basis functions per atom to achieve convergence. The TB calculation

will use only nine functions per atom, assuming an sp3d5 basis set. Given that the time

to diagonalize Hamiltonian scales as the cube of the number of basis functions, we see that

TB methods are inherently one thousand times faster than the corresponding first-principles

calculations. Furthermore, any algorithmic improvements in eigenvalue determination can

be applied to TB methods as well as first-principles. Tight-binding calculations will therefore

always be faster than first-principles, and so can be applied to much larger systems. As we

have seen, these methods are routinely applied to molecular dynamics simulations containing

hundreds of atoms, and have been applied to systems containing several thousand atoms.

The major bottleneck to the widespread use of TB methods is the development of ac-

curate parameter sets, particularly for binary and ternary compounds. This involves large

numbers of first-principles calculations, and thorough testing of the resulting parameter sets.

However, once a parameter set is validated, it can be used for a wide variety of applications.

We expect the use of TB methods to grow rapidly as more systems are parametrized.
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